Monday, June 9, 2014

The Telephone

Early Telephone Development 

In 1729 English chemist Stephen Gray transmitted electricity over a wire. He sent charges nearly 300 feet over brass wire and moistened thread. An electrostatic generator powered his experiments, one charge at a time. A few years later, Dutchman Pieter van Musschenbroek and German Ewald Georg von Kleist in 1746 independently developed the Leyden jar, a sort of battery or condenser for storing static electricity. Named for its Holland city of invention, the jar was a glass bottle lined inside and out with tin or lead. The glass sandwiched between the metal sheets stored electricity; a strong charge could be kept for a few days and transported. Over the years these jars were used in countless experiments, lectures, and demonstrations.
In 1753 an anonymous writer, possibly physician Charles Morrison, suggested in The Scot's Magazine that electricity might transmit messages. He thought up a scheme using separate wires to represent each letter. An electrostatic generator, he posited, could electrify each line in turn, attracting a bit of paper by static charge on the other end. By noting which paper letters were attracted one might spell out a message. Needing wires by the dozen, signals got transmitted a mile or two. People labored with telegraphs like this for many decades. Experiments continued slowly until 1800. Many inventors worked alone, misunderstood earlier discoveries, or spent time producing results already achieved. Poor equipment didn't help either.
Balky electrostatic generators produced static electricity by friction, often by spinning leather against glass. And while static electricity could make hair stand on end or throw sparks, it couldn't provide the energy to do truly useful things. Inventors and industry needed a reliable and continuous current.
In 1800 Alessandro Volta produced the first battery. A major development, Volta's battery provided sustained low powered electric current at high cost. Chemically based, as all batteries are, the battery improved quickly and became the electrical source for further experimenting. But while batteries got more reliable, they still couldn't produce the power needed to work machinery, light cities, or provide heat. And although batteries would work telegraph and telephone systems, and still do, transmitting speech required understanding two related elements, namely, electricity and magnetism.
In 1820 Danish physicist Christian Oersted discovered electromagnetism, the critical idea needed to develop electrical power and to communicate. In a famous experiment at his University of Copenhagen classroom, Oersted pushed a compass under a live electric wire. This caused its needle to turn from pointing north, as if acted on by a larger magnet. Oersted discovered that an electric current creates a magnetic field. But could a magnetic field create electricity? If so, a new source of power beckoned. And the principle of electromagnetism, if fully understood and applied, promised a new era of communication
In 1821 Michael Faraday reversed Oersted's experiment and in so doing discovered induction. He got a weak current to flow in a wire revolving around a permanent magnet. In other words, a magnetic field caused or induced an electric current to flow in a nearby wire. In so doing, Faraday had built the world's first electric generator. Mechanical energy could now be converted to electrical energy. Is that clear? This is a very important point.
The simple act of moving ones' hand caused current to move. Mechanical energy into electrical energy. Although many years away, a turbine powered dynamo would let the power of flowing water or burning coal produce electricity. Got a river or a dam? The water spins the turbines which turns the generators which produce electricity. The more water you have the more generators you can add and the more electricity you can produce. Mechanical energy into electrical energy.
Faraday worked through different electrical problems in the next ten years, eventually publishing his results on induction in 1831. By that year many people were producing electrical dynamos. But electromagnetism still needed understanding. Someone had to show how to use it for communicating.
In 1830 the great American scientist Professor Joseph Henry transmitted the first practical electrical signal. A short time before Henry had invented the first efficient electromagnet. He also concluded similar thoughts about induction before Faraday but he didn't publish them first. Henry's place in electrical history however, has always been secure, in particular for showing that electromagnetism could do more than create current or pick up heavy weights -- it could communicate.In a stunning demonstration in his Albany Academy classroom, Henry created the forerunner of the telegraph. In the demonstration, Henry first built an electromagnet by winding an iron bar with several feet of wire. A pivot mounted steel bar sat next to the magnet. A bell, in turn, stood next to the bar. From the electromagnet Henry strung a mile of wire around the inside of the classroom. He completed the circuit by connecting the ends of the wires at a battery. Guess what happened? The steel bar swung toward the magnet, of course, striking the bell at the same time. Breaking the connection released the bar and it was free to strike again. And while Henry did not pursue electrical signaling, he did help someone who did. And that man was Samuel Finley Breese Morse.
From the December, 1963 American Heritage magazine, "a sketch of Henry's primitive telegraph, a dozen years before Morse, reveals the essential components: an electromagnet activated by a distant battery, and a pivoted iron bar that moves to ring a bell." See the two books listed to the left for more information.
In 1837 Samuel Morse invented the first workable telegraph, applied for its patent in 1838, and was finally granted it in 1848. Joseph Henry helped Morse build a telegraph relay or repeater that allowed long distance operation. The telegraph later helped unite the country and eventually the world. Not a professional inventor, Morse was nevertheless captivated by electrical experiments. In 1832 he heard of Faraday's recently published work on inductance, and was given an electromagnet at the same time to ponder over. An idea came to him and Morse quickly worked out details for his telegraph.

No comments:

Post a Comment